ORGANIZATOR

proinvent.utcluj.ro

Salonul International al Cercetării Stiințifice, Inovării și Inventicii PRO INVENT 2025 Ediția a XXII-a

EXPERIMENTAL MODEL FOR BIOFUNCTIONALIZATION OF TI-MO-ZR-TA ALLOYS USED IN ORTHOPEDIC IMPLANTOLOGY (BIO-SIMTIT)

Petrică VIZUREANU¹, Ioana Corina MOGA², Mădălina Simona BĂLŢATU¹, Nicoleta Raluca JIANU², Andrei Victor SANDU¹

1 - "Gheorghe Asachi" Technical University of Iasi, Faculty of Materials Science and Engineering, 2 - North Giurgiu Technological Park SA

The BIO-SIMTIT project proposes the development and validation of new Ti-Mo-Zr-Ta titanium alloys for orthopedic implants, with the main objective of improving their bone integration and biocompatibility.

By using advanced additive laser manufacturing (SLM) technology, high precision is ensured in the creation of personalized implants, adapted to the specific needs of each patient.

In addition, the application of a biomimetic surface treatment with hydroxyapatite contributes to the creation of an interface favorable to osteointegration, essential for the long-term success of the implants. This integrated approach not only meets the current requirements in the field of orthopedic implantology, but also opens up new perspectives in the personalization of treatments, offering sustainable and scalable solutions to improve the quality of life of patients.

BIO-SIMTIT project is distinguished by the combined use of SLM technology for precise alloy fabrication and the application of a biomimetic hydroxyapatite surface treatment, thus offering a unique and personalized solution for each clinical case.

Website: https://simtit.ro/bio-simtit/

Call: Experimental Demonstration Project (PED), Program 5.7 - Partnership for Innovation,

Subprogram 5.7.1 – Partnerships Competitiveness

Funder: Executive Unit for Financing Higher Education, Research, Development and Innovation


(UEFISCDI), Romania

Project period: 08/01/2025 - 31/12/2026


Creation of a solution that significantly improves current methodologies in orthopedic

Addressing and solving a specific need, identified in orthopedic implantology

Ensuring that the solution is sustainable, easy to use and scalable

Acknowledgement

This work was funded by the Ministry of Research and Innovation, within National Project PN-IV-P7-7.1-PED-2024-0080, (PNCDI IV).